

Integrating Energy Conservation into Operations & Maintenance

May 11, 2011

Contents

Section 1 - Introduction	3
Section 2 - Cooling Systems	6
Section 3 - Heating Systems	12
Section 4 - Air Handling Equipment	19
Section 5 - Electric Motors and VSD Applications	24
Section 6 - Lighting	29
Section 7 - Compressed Air	33
Section 8 - Closing Remarks	38

Section 1 - Introduction

Section 1 - Introduction

Discussion Points

- Most O & M Personnel don't have time to be concerned about energy – they are trying to keep the place running!
- Fact is: there is between 10% and 20% energy savings available that is low cost or no cost
- You don't need expensive commissioning agents to do this work – most work can be accomplished through service orders
- The O & M Folks are in the field every day and they have the ability to make this happen

Section 1 - Introduction

- Rule: You can not save more energy than you consume
- There are only 3 ways to save energy

- Reduce load, reduce operating hours
- Increase efficiency
- There are 5 ways to reduce energy costs (switch fuels or change rates)

- Raising chilled-water temperature saves energy
- Watch dehumidification requirements

Machine	Chilled Water Temperature Increase (°F)							
Type	1°F	2°F	3°F	4°F	5°F	6°F	7°F	8°F
Centrifugal	1.6%	3.2%	4.8%	6.4%	8.0%	9.6%	12.8	16.0 %
Absorption	0.8%	1.6%	2.4%	3.2%	4.0%	4.9%	6.5%	8.1%

- Lowering condenser-water temperature saves energy
- Watch chiller limitations

Machine	Condenser Water Temperature Reduction (°F)							
Type	1°F	2°F	3°F	4°F	5°F	6°F	7°F	8°F
Centrifugal	1.1%	2.2%	3.3%	4.4%	5.5%	6.6%	7.7%	8.8%
Absorption	0.5%	1.1%	1.6%	2.1%	2.6%	3.2%	4.2%	5.3%

Verify proper refrigerant charge

Consider a Waterside Economizer if:

- a. You have a water cooled chilled water plant.
- b. You have to cool into the winter months and the outside air is consistently below 60 deg. F.
- c. You don't have an air side economizer.

Section 2 – Cooling Systems Action Plan

- 1. Check the refrigerant charge against the manufacturers recommendations on the larger systems, check the smaller systems through service calls or routine maintenance.
- 2. Implement condenser water reset w/VSD's on fans (check with chiller manufacturer for limits).
- 3. Consider chilled water reset if you do not have significant humidity problems or utilize in the Spring and Fall only.

Repair Steam Leaks

- Reduce excess air
- Provide sufficient air for combustion (check CO₂ & O₂)
- 1% to 2% O_2 in flue gas is optimum

- Reduce steam pressure/hot water temperature
- Reduce boiler blow-down

• Shut off steam tracers during summer (electric heat tape too!)

- Purpose of a steam trap
 - Allow condensate and air to pass through the trap
 - Retains the steam
- Steam traps have a high failure rate
- Checking for failed steam traps
 - Signs (steam rising from vents and drains)
 - Sight (watch the discharge no return)
 - Sound (listen to the operation)
 - Temperature (monitor the delta T) H/H, H/C &
 H/W

• Utilize a hot water reset schedule (vary hot water temperature based on outside air)

Typical Hot Water Reset Schedule

Outside Air Temperature (F)	60	50	40	30	20	10	0
Hot Water Supply Temperature (F)	100	115	130	145	160	170	180

Section 3 – Heating Systems Action Plan

- 1. If you have a steam boiler:
 - a. Check A/F Ratio at the start of the season.
 - b. Make sure all steam traps are working.
 - c. See if you can lower steam pressure (check requirements at the farthest location).
- 2. If you have a hot water boiler:
 - a. Check A/F Ratio at the start of the season.
 - b. Vary supply water temperature based on OA temperature.
- 3. Repair all distribution leaks ASAP.

You need to know what you have and how it is supposed to operate!

- Single Zone, Constant Volume
- Dual Duct
- Multizone
- VAV
- Perimeter Induction Units

General O & M - check economizers, dampers, control valves, etc... for proper operation

- Inspect ductwork for leaks & repair
- Replace filters when required (monitor dP)
- Consider night ventilation to offset cooling (swing seasons)
- Shut down non interlocked exhaust fans at night if not required.

Energy Savings Control Strategies for AHU's

- Static pressure reset
 - Lower the static pressure when you can
 - Fan power = f_x {pressure, flow, 1/efficiency}
- Night setup/setback
- CO₂ based ventilation
- Maximize economizer use
- Shut down AHU's/or OA dampers to unoccupied spaces (start/stop)
- Occupancy sensor controlled VAV Boxes

Section 4 – AH Systems Action Plan

- Know how your systems are supposed to operate & verify operation.
- 2. Use night setup/setback.
- 3. Investigate using static pressure reset if applicable or demand controlled ventilation
- 4. Maximize economizer use.
- 5. Shut down AHU's/or OA dampers to unoccupied spaces & shut down non interlocked exhaust fans at night if not required.
- 6. Replace filters based on differential pressure.

Section 5 – Electric Motors & Drives

Section 5 – Electric Motors and Drives

- Do not oversize motors
- Match motor speed to flow requirement
 - Change pulley ratio if possible (less work = less energy)
- Specify energy-efficient (cogged) v-belts for belt drive applications
- Buy/specify premium-efficiency motors instead of rewinds

Section 5 – Electric Motors & Drives

Check for voltage imbalance

Motor Loss Increase From Voltage Imbalance

Section 5 – Electric Motors and Drives

VSD Applications (for motors over 5 HP)

- Secondary Chilled & Hot Water Pumps
- Cooling Tower Fans
- Domestic Water Booster Pumps
- Variable Air Volume Fans (supply & return)

Section 5 – Motors & Drives Action Plan

- 1. Use energy-efficient (cogged) v-belts (with soft starts).
- 2. Specify premium-efficiency replacement motors (use inverter duty motors with variable speed drives).
- 3. Properly size motors and sheaves for the correct speed.
- 4. Review your equipment inventory for VSD applications (5 HP and above).
- 5. Check for voltage imbalance.

Section 6 – Lighting

Section 6 – Lighting

- Retrofit all 4 foot T-12 fixture with T-8's and electronic ballasts
- Exit lights (LED)
- Don't over light stairwells and other common areas
- Occupancy sensors (4-4 foot fixtures or more)
- Day-lighting controls (exterior spaces/expensive)
- Multi-level switching/individual switching
- Photocell controlled exterior lighting
- Task lighting

Section 6 – Lighting

Group Relamping

- Saves labor
- Improves light levels
- Control disposal of lamps
- Don't forget to clean the fixture

Section 6 – Lighting Action Plan

- 1. Buy a light meter and an IESNA Lighting Handbook.
- 2. Check stairwells and other common areas for over lighting.
- 3. Make sure T-8 lamps and electronic ballasts are used in all fluorescent fixtures retrofit all T-12 lamps and magnetic ballasts.
- 4. Replace incandescent and fluorescent exit signs with LED exit signs.
- 5. Verify exterior lighting is controlled by photocells.
- 6. Use occupancy sensors in conference rooms, large offices and large bathrooms with 4 fixtures or more.
- 7. Utilize Group relamping when possible.

Repair Compressed Air leaks

Cost of Compressed-Air Leaks					
Equivalent	Energy Loss (kWh/yr)				
Hole Size (inch diameter)	110 psig	100 psig	90 psig		
3/8	226,100	208,100	190,000		
1/4	100,500	92,500	86,300		
1/8	25,100	23,100	21,100		
1/16	6,300	5,800	5,300		
1/32	1,600	1,400	1,300		

Minimize the maximum pressure

Single-Stage Reciprocating and Rotary Screw Compressors 24, 28

Two-Stage Reciprocating and Centrifugal Compressors²

Reference: Energy Conservation Program Guide for Industry and Commerce, NBS Handbook 115, Department of Commerce, Washington DC. 1974.

Provide cooler intake Air

Relocate air intakes to cooler locations					
Air Intake Temp, °F	Power Savings, %				
30	7.5				
50	3.8				
70	0				
90	(3.8)				
110	(7.6)				

Reference: Energy Conservation Program Guide for Industry and Commerce, NBS Handbook 115, Department of Commerce, Washington DC. 1974.

Section 7 – Compressed Air Action Plan

- 1. Eliminate leaks!!!
- 2. Turn off compressors when not needed.
- 3. Reduce line pressure to minimum required
- 4. Locate compressor intakes away from heat sources or duct to the outside.
- 5. Check pressure regulators (reduce pressure if possible).

Section 8 – Closing Remarks

- O & M Folks are your eyes and ears in the field, use them to indentify energy saving opportunities
- Most of these recommendations are service order scope, few might be IDIQ level
- For those re-competing a contract, consider adding an energy savings incentive paragraph in the contract

Section 8 – Closing Remarks

Questions?

Section 8 – Closing Remarks

Contact Information
Pete Aitcheson
O & M Program Manager
NASA HQ
(202) 358-0971
peter.c.aitcheson@nasa.gov